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Outline of talk

! ICARUS is a large underground experiment which is based on the new
liquid Argon TPC technology, originally proposed at CERN by
Carlo!Rubbia (CERN-EP/77-08 (1977)) and supported by INFN over many
years of R&D

! ICARUS T3000 acts as a sort of observatory for the study of
neutrinos and the instability of matter at the Gran Sasso
Underground Laboratory

! The Liquid Argon TPC is a new kind of detector, effectively an
electronic bubble-chamber
" ICARUS T3000 at Gran Sasso is an important milestone for

this technology and acts as a full-scale test-bed with a total of
3!kton of liquid Argon to be located a difficult underground environment

" This technology has also great potentials in other applications, such as
future very large underground experiments

! In this talk:

" Physics aims

" Technology

" Status

" What kind of CERN neutrino beams could take advantage liquid Ar
detectors? (this is a seminar, not a proposal, meant for discussions…)
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The ICARUS collaboration (25 institutes, !150 physicists)
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C. Montanari, S. Muraro, G. Natterer, S. Navas-Concha, M. Nicoletto, G. Nurzia, C. Osuna, S. Otwinowski, Q. Ouyang,
O. Palamara, D. Pascoli, L. Periale, G.!Piano Mortari, A. Piazzoli, P. Picchi, F. Pietropaolo, W. Polchlopek, T. Rancati,
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!K

ICARUS T3000: “A Second-Generation
Proton Decay Experiment and Neutrino

Observatory at the Gran Sasso
Laboratory”

! 100 m
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Neutrino masses and mixing: the standard view

Figures from G. Raffelt

Weak eigenstates
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Studying the leptonic mixing matrix

! The leptonic mixing matrix (MNSP) can be parameterized as the product of
several rotation matrices, that turn out to be experimentally accessible in
different experiments

! Note: the quark mixing matrix (CKM) has been studied for more than 50 years
and there are still planned experiments, like LHCb,  to study it in the future

! The complex phase ! could play a fundamental role in the matter-antimatter
asymmetry of the Universe
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“Large” !m2 data

??

Disappearance:

Appearance:

P("µ #"$ ) = cos
4 %13 sin

2
2%23 sin

2 &m32

2 L

4E

' 
( 

) 
* 

P("µ #"
e
) = sin2 2$13 sin2$23 sin2 %m32

2 L

4E

& 
' 

( 
) 

?

?

"m
32

2 # 2.5 $10
%3

eV
2
,

&
23
# 45

o

,

&
13

<# 11
o

CHOOZ

P("µ #"µ) $1% sin
2
2&23 sin

2 'm32

2 L

4E

( 
) 

* 
+ 

P("
e
#"

e
) $1% sin

2
2&13 sin

2 'm32

2 L

4E

( 
) 

* 
+ 

Superkamiokande



André Rubbia, CERN AB seminar, November, 2003 9

Neutrino masses: viewpoint from fundamental theory

! Non-vanishing neutrino masses are a clear indication of new physics beyond
the Standard Model (so far the only one)

" Dirac mass: Even if Higgs boson is discovered at LHC, Higgs
mechanism cannot explain neutrino masses unless we postulate the
existence of right-handed neutrinos

" Majorana mass: completely beyond the SM, since implies lepton
number violating terms in the basic theory.

" Mixed: See-saw mechanism, explains why neutrinos are so light, but
implies existence of super heavy neutrinos: new physics beyond SM

m" #
m f
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MN R

  ?

Super
heavy
neutrino ?
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Matter instability: radioactive decays
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Proton decay: baryon number violation

! The baryon number violation could be mediated through very heavy
particles. This would make this process possible, but rare at low
energy.
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Force unifications: GUT physics

W,Z bosonsSuper heavy gauge
bosons X, Y?
heavy particles
(e.g. heavy SUSY
partners, …) ?

Photon !

Gluon g

Graviton G ?
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Grand Unification of forces: coupling constants

! Even though we do not know
whether GU is actually occurring,
there are experimental “hints”
which support it

! The forces seem to unify at an
energy that will not be reachable by
accelerator techniques (at least for
a long time)

! Extreme precision measurements
or extremely rare decay searches
(sometimes called “propagator”
physics) are the only way to probe
the GUT scale

! Complementary to high
energy accelerator physics
frontier

LHC domain

!103 GeV

Unification ?

!1017±1 GeV

LEP precision measurements
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Gran Sasso Underground Laboratory

Earth shielding
of 3800 meters
of water
equivalent

Hall B

!14 m
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ICARUS T3000: “A Second-Generation Proton Decay Experiment
and Neutrino Observatory at the Gran Sasso Laboratory”

Muon spectrometer

T600 T1200

T1200

!3 kton of liquid Argon
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The Liquid Argon TPC (I)

Time

Drift direction

Edrift

•High density

•Non-destructive readout

•Continuously sensitive

•Self-triggering

•Very good scintillator: T0

Density 1.4 g/cm3

Radiation length 14 cm
Interaction length 80 cm
dE/dx(mip) = 2.1 MeV/cm
T=88K  @ 1 bar
We!24 eV
W!!20 eV
Charge recombination (mip)
@ E = 500 V/cm ! 40%

Readout planes: Q
UV Scintillation Light: L

Continuous
waveform recording

Low noise Q-amplifier
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The Liquid Argon TPC (II)

! Cryogenics: Detector must be maintained at cryogenic temperatures, safety

issues must be addressed for large detectors, in particular underground

! LAr Purity: Ionization tracks can be transported practically undistorted, by a

uniform electric field, for distances of the order of several meters in a highly

purified (electronegative impurities < 0.1 ppb O2 equiv.) liquid argon (LAr).

! Charge Readout: A set of electrodes (wires) placed at the end of the drift

path senses the ionization charges and provides a two-dimensional view of the

event (wire co-ordinate vs drift co-ordinate)

"No charge multiplication occurs in LAr !! several wire planes can

be installed with the wires having different orientations !! non-destructive

charge readout !! multiple views !! 3D reconstruction

! UV light Readout: LAr is also a very good scintillator !!

scintillation light (! = 128 nm) provides a prompt signal to be used for triggering

purposes and for absolute event time measurement !! immersed pmt

coated with WLS
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Past experience and results - 50 liter prototype in CERN WANF

! Active volume : 50 liters

! Readout planes: 2 (0°,90°)

! Max drift distance: 45cm

!Reconstruction of vertices of !-interactions

!Fermi-motion

!Track direction by "-rays

!dE/dx versus range for K,#,p discrimination

!Max. electron lifetime > 10 ms

• LAr purification by Ar vapour filtering and re-

condensation

• LAr purity monitors

• Optimization of front-end electronics for

induction and collection planes

• Warm and cold electronics

• Readout chain calibration studies

• Signal treatment

• Collection of scintillation light

• 1.4 m drift length (special test)

!µ + n" µ
#

+ p

"µ + N # µ
$

+ X
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The path to massive liquid argon detectors

T600 detector

20 m

2001: First T600 module

Lab activities:

Cooperation with industry

CERN

CERN

CERN
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The “first unit”: T600 Module

! Two separate containers

! inner volume/cont. =
3.6 x 3.9 x 19.6 m3

! Sensitive mass =
476 ton

! 4 wire chambers with 3
readout planes at 0°, ±60°
(two chambers / container)

!! 54000 wires
None broke during test

"Maximum drift = 1.5 m

!HV = -75 kV @ 0.5 kV/cm

"Scintillation light
readout with 8” VUV
sensitive PMTs
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!270‘000 liters LAr
        = T300

First T300 cryostat during construction (2001)
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HLBC 500 liter @ CERN (1963)
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Cryostat (half-module)

20 m

4 m

4 m

View of the inner detector

ICARUS T300 prototype

Readout electronics
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The T600 module

! Approved and funded in 1996

! Built between years 1997 and 2002

! Completely assembled in the
INFN assembly hall in Pavia

! Full scale Demonstration test
run of half-unit during first half
2001

!Three months duration

!Completely successful

!Data taking with cosmic rays

!Detector performance

!Full scale analyses

"Full unit Assembly terminated
in 2002

"Waiting to be installed at LNGS
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Long longitudinal muon track crossing the cathode plane
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3D ViewTop View

dE/dx = 2.1 MeV/cm

3-D reconstruction of the long track3-D reconstruction of the long track

dE/dx distribution along the trackdE/dx distribution along the track
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µ
Single wire

performance T600 Data

10 MeV3.2 MeV
1.8 MeV

Two 
consecutive

 wires Noise

!

Threshold above noise ! 200 KeV
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Measurement of the muon decay spectrum and ! parameter

Collection view

A

B

C

µ+

e+

Run 939 Event 95Run 939 Event 95

"
E

E
= 11 ±1( )% / E(MeV ) # (1.97 ± 0.05)%
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ICARUS detector configuration in LNGS Hall B (T3000)

! 35 Metres

First Unit  T600 +

Auxiliary

Equipment

First Unit  T600 +

Auxiliary

Equipment

T1200 Unit

 (two T600

superimposed)

T1200 Unit

 (two T600

superimposed)

T1200 Unit

 (two T600

superimposed)

T1200 Unit

 (two T600

superimposed)

! 60 Metres

(final co-location of magnet not yet finalized)

MagnetMagnet
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The T1200 “Unit”

! Based on cloning the present T600
containers

"A cost-effective
solution given tunnel
access conditions

! Preassembled modules outside
tunnel are arranged in
supermodules of about 1200 ton
each (4 containers)

" Time effective solution
(parallelizable)

! Drift doubled 1.5 m ! 3 m

" sensible solution given
past experience

! Built with large industrial support
(AirLiquide, Breme-Tecnica, Galli-
Morelli, CAEN, …)

" “order as many as you
need” solution

Detailed engineering project was

produced by Air Liquide (June 2003)

T1200 cryostat ready for
tendering
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Safe installation of T3000 @ LNGS

! Safe installation is possible even though it takes time to design in concordance
with safety and laws. This is a very sensitive subject given the Borexino accident
(the justice has been ceased against the LNGS laboratory).

" Iterations needed, close cooperation between safety experts, risk analysts and
engineers

! Basic guidelines

" A full Definitive Project of installation of T3000 was prepared by industry

" In parallel, LNGS subcontracted a specialized company to provide a Safety
Risk Analysis Document (SRA)

! Status:

" The “definitive project” of the T600 installation at LNGS has
been approved in March, 2003

" Installation foreseen in 2004 (installation contract (1.6m!)
should be signed by infn by end of 2003)

" In the meantime, a new director has been appointed at LNGS

" A new working group led by A.Scaramelli (CERN/ST) has been
formed to re-assess the safety aspects. Expect answer by end of
2003.
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T3000 “definitive” project at LNGS Hall B

Complete engineering

T600T1200T1200
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Atmospheric neutrino events

Mass is not the only issue!Mass is not the only issue!

50 cm

6
5
 c

m

p

e-

In 1 year of T600 running ICARUS will collect about  100
events of this quality (in presence of oscillations)

In 1 year of T600 running ICARUS will collect about  100
events of this quality (in presence of oscillations)
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Supernova and solar neutrinos

! Four distinct signatures (see JCAP 0310:009,2003)
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ICARUS and CERN-LBL program

! ICARUS as a LBL neutrino oscillations experiment between CERN and LNGS
using SPS was discussed in the 1993 proposal already

" ICARUS-II. A Second Generation Proton Decay Experiment And Neutrino
Observatory At The Gran Sasso Laboratory Proposal, VOL I (1993) & II
(1994), LNGS-94/99.

! The final proposal for T3000 has been written and submitted to

" INFN directorate and Comm. II in    November 2001

" LNGS SC in    November 2001

" CERN SPSC in    March 2002 (SPSC-P-323)

! It was recommended/approved by:

" Italian “Direttivo INFN” (December 2001),

" LNGS SC (for the atmospheric, solar neutrino and proton decay physics
program, March 2002),

" Italian “Commissione Scientifica II” (for the whole scientific physics
program, June 2002),

" CERN SPS Committee (for the CNGS neutrino beam physics program,
September 2002).

" CERN RB approval: CNGS-2 (March 2003)
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CNGS  !" interaction, E!=18.7 GeV
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CNGS beam profile measurement

After one year, precise measurement of

The CNGS beam profile

Average neutrino energy resolution

around   7%

One year 

data taking

1800 events



André Rubbia, CERN AB seminar, November, 2003 42

!"/!µ  CC increases with energy

(kin. suppr. due to " mass)
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Total rates with T3000 @ CNGS

! Detector configuration

" T3000

" Active LAr: 2.35 ktons

! 5 years of CNGS running

" Shared mode

" 4.5 x 1019 p.o.t./year
(conservative?)

! 280 !" CC expected for

#m2
23=3 x 10-3 eV2 and

maximal mixing

7505 x 10-3

2803 x 10-3

1252 x 10-3

311 x 10-3

!" CC, #m2 (eV2)

243! NC

10600! NC

17!e CC

262!e CC

652!µ CC

32600!µ CC

Expected RatesProcess
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!µ" !# appearance search summary

Super-Kamiokande: 1.6 < $m2 < 4.0 at 90% C.L.

! T3000 detector (2.35 kton active, 1.5 kton fiducial)

! Integrated pots “nominal”= 5x4.5x1019 = 2.25 x1020 pots

! Several decay channels are exploited (electron = golden channel)

! Straight-forward kinematical analyses à la NOMAD experiment @
CERN, however with typically factor 100 less background rejection
required

! Backgrounds measured in situ (main background is !e CC)

! High sensitivity to signal, and oscillation parameters determination
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Kinematical criteria: the NOMAD experience

! In NOMAD it was demonstrated that
kinematical criteria provide a powerful way
to separate tau signal from backgrounds

! It was also realized that kinematical closure
depends on many subtle effects

" Nuclear effects at vertex

" Hadronization

" Detector ineffiencies

" …

! NOMAD never managed to reproduce
exactly the kinematics of the events

" NOMAD had a good muon
measurement and relied on the “data
simulator” technique

NOMAD
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Kinematical vs emulsion: NOMAD vs CHORUS

CHORUS limit: sin22! < 7x10–4 90% C.L.  (Phys.Lett.B497:8-22,2001) 



André Rubbia, CERN AB seminar, November, 2003 47

!µ" !e appearance: #13 search

! T3000 detector (2.35 kton fiducial)

! Integrated pots “nominal”= 5x4.5x1019 = 2.25 x1020 pots
! Profits from unique e/$0 separation in ICARUS

!µ" !e

!x+Ar" !x+$
0 + jet

!e+Ar"e+jet

!e+Ar"e+jet+

Excess…

“intrinsic”

“e”
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CNGS neutrino fluxes and rates

! Small !e contamination

! Error on knowledge relative to !µ

"
e

/"µ = 0.8%

CERN SL-note 2000-063 EA

"#
e

/#µ $ ±5%#
e( ) /#µ

$ ±4 %10
&4
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158 MeV

752 MeV

! = 141o

Minv = 650 MeV

Run 975, Event 151

Minv =140 MeV

Collection view

Pi zero candidate (preliminary)

! = 25o

140 MeV

•Reconstruction of "-showers

(error evalulation in progress)

T600
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A fully simulated and digitized !0 event

Induction 2

Induction 1

Collection

full simulation,digitization, and
noise inclusion
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Rejection !0 based on imaging

! Based on full simulation, digitization,
noise and automatic reconstruction of
events

! Algorithm: cut for 90% eff. electrons

1. Events with vertex: conversion within
1cm (3 wires) of vertex R1!19

2. Single/double mip R2!30
(preliminary)

Preliminary

<dE/dx> MeV/cm

Single photon rejection

Imaging provides !2"10-3 efficiency for single  !0

cut

1 !0 (MC)
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Rejection !0 based on imaging
! !0 surviving dE/dx separation cut (total 31 events out of 1000 1GeV !0)

" 21 events:  Compton scattering

" 5 events: Asymmetric decays (partners have less than 4 MeV)

" 2 events: positron annihilation immediately

" 1 event: positron make immediate Bremsstrahlung taking >90% of energy

! !0 rejection improves with energy: 5% @ 0.25 GeV, 4% @ 0.5 GeV, 3% @ 1 GeV, 2% @ 2 GeV

Compton electron

! Further rejection by kinematical cuts (depends on actual beam energy profile)

" E.g. "n # "!0n : precise mass reconstruction

Finally: NC EVENT rejection: F(NC) <!1$10-3

Full simulation+digitization+noise
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Predicting beam components (I)

! CERN-NGS has no “near station”

" Beam components cannot be “measured” in absence of
oscillations (near/far comparison)

" Note however that near/far also relies heavily on MC calculations
since near/far spectra are different

! Neutrino beam components must be calculated

" Precise knowledge of all elements in beam line

" Precise monitoring of proton beam impinging on target (beam spot
position + tails)

" Precise alignment of elements and monitoring of geometry
(A.E.Ball et al., CERN-EP-2001-037/CERN-SL-2001-016 EA)

" Muon monitors

" Dedicated hadron-production experiment : NA56/SPY experiment

" A good MC program (FLUKA)

! Preliminary estimate (Guglielmi et al., INFN note):

" systematic error at CNGS: 3% on !e/!µ
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Predicting beam components (II): in situ
! 10% of !µ CC events have E!>50 GeV

! Precise measurement for p above 50 GeV and
charge discrimination help in the prediction of
the !e component

! See PREDICTION OF NEUTRINO FLUXES
IN THE NOMAD EXPERIMENT.By NOMAD
Collaboration (P. Astier et al.). CERN-EP-
2003-032, Jun 2003. 43pp. Submitted to NIMA
e-Print Archive: hep-ex/0306022

!µ

!µ

!e
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For  !m2
23 = 2.5 x 10-3For  !m2

23 = 2.5 x 10-3

Limited by statistics
of CNGS!

pots “nominal”=
5x4.5x1019 =

2.25 x1020 pots
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SPS-CNGS beam optimization for !13 (I): what?

! We have investigated the possibility to improve the CNGS beam
performance for !13 searches

! We showed that by an appropriate optimization of the target and
focusing optics, we could increase the flux of low energy
neutrinos by about a factor 5 compared to the current optimization

! This turns out to be the most sensitive setup for !13 searches of the
currently approved long-baseline experiments and is competitive with
the proposed JHF superbeam

! PLEASE NOTE: this is not a proposal, it is a study by “physicists”
trying to optimize “physics” output. In particular, technical feasibility,
cost, cost vs physics optimization have NOT been addressed.

! More details in:

" A Low-energy Optimization Of The CERN-NGS Neutrino Beam For A
Theta(13) Driven Neutrino Oscillation Search,
JHEP 0209:004,2002
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SPS-CNGS beam optimization for !13 (II): Motivations

! The confirmation that "µ#"$ oscillations will be an important milestone

" However, the main focus of neutrino physics is shifting towards the
subleading "µ#"e oscillations driven by the so-called !13 angle

! The measurement of a non-vanishing !13 would
" Be a discovery, proving that the mixing matrix is 3x3 and opening the door

to search for CP-violation searches in the leptonic sector !
    (note that CP-violation effects will only be visible for relatively large !13)

! The advantage of a “general purpose” detector like ICARUS

" Can fully exploit a low energy beam !
" Profits from unique e/%0 separation in ICARUS

Maximize flux between 0 and 2.5 GeV !
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Maximum & minimum of oscillation

"m
2

= 2.6 #10
$3

eV
2

Emin Emax

Neutrino energy (GeV)

P
ro

b
a
b
il

it
y

L=730 km
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Low energy CNGS optimization

Factor of 5 improvement at low energyFactor of 5 improvement at low energy

The current CNGS optimization for ! appearance is not optimal for

the search for subleading "µ#"e oscillation. Try to optimize

Maximize flux between 0 and 2.5 GeVMaximize flux between 0 and 2.5 GeV

6.10–14
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Low energy CNGS target and optics

New compact

target

New focusing

Decay tunnel
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Focusing horn (1963)

CE
R

N
-C

D
S
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Reflector (1966)

CE
R

N
-C

D
S
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Predicted neutrino fluxes

! Full FLUKA simulation

! Factor 5 improvement at low energy
Maximum oscillation

For !m2=3"10-3 eV2
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Expected number of events

CNGS

L.E.

CNGS

!
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For  !m2
23 = 2.5 x 10-3For  !m2

23 = 2.5 x 10-3

(Still) Limited by
statistics of CNGS
but optimized

pots “nominal”=
5x4.5x1019 =

2.25 x1020 pots
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Overall fit of oscillation parameters

Maltoni et al., hep-ph/0309130

Assumptions:

•Only 3-mixing neutrinos

•Ignore LSND result

•Atmospheric oscillation is tau appearance

•Combine solar, atmospheric, reactors

sin
2
2"

13
# 4sin

2
"

13
Warning: "

13
<< 1( )

sin
2
2"

13( )
best

# 0.025
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Sensitivity of CNGS L.E. optimization

For !m2 = 2.5"10–3 eV2:

pots “upgrade”=
1.5x7x4.5x1019 =

4.7 x1020 pots

Increasing the proton intensity of PS and

SPS, (R. Cappi et al., CERN-PS-2001-

041-AE)
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Proton beam optimization for !13

! Upgraded proton driver intensity ??? YES!
" In case of evidence for non vanishing !13 at CNGS, a more intense

“superbeam” will be required to gain more statistics to understand better
the phenomenon

" In case of negative result, more sensitivity will be required…

! New types of neutrino beams have been proposed

" Neutrino factories (mu ring) require high intensity proton source (+  !’s)

" "-beams (“Zuc-beams”)

" “Conventional low energy” using high intensity SPL @ Ep=2.2 GeV

" All are very good match to large underground ICARUS-like detectors

! We ask a question concerning conventional pion beams:

" Given the oscillation parameters and a given baseline, is there a best
proton energy from the point of view of proton “economics”?

! More details in:

" “Proton Driver Optimization For New Generation Neutrino Superbeams To
Search For Subleading #µ $ #e Oscillations (Theta(13) Angle)”, New
J.Phys.4:88,2002
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View of the neutrino area (1967)

Swiss-French border

CE
R

N
-C

D
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Baselines…

Fréjus

LNGS

CERN

L=130 km
L=730 km
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…neutrinos do not care, provided they have the right energy
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Proton driver optimization

protons

target focus Decay pipe

On-axis

Ep

Pion energy

Pion energy

Neutrino energyY
ie

ld Y
ie

ld Y
ie

ld

If the neutrino detector is far away:If the neutrino detector is far away:

•• neutrino energy  neutrino energy !! 0.43  0.43 !! pion  pion energyenergy

••  LorentzLorentz-boost gives a factor E-boost gives a factor E""
22 on solid angle on solid angle

For For EEpp, we consider LE (2.2, 4.4, we consider LE (2.2, 4.4 GeV GeV), ME (20), ME (20÷÷50 50 GeVGeV), HE (400), HE (400 GeV GeV))

(SPL) (“PS”) (SPS)
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Neutrino beam: scaling of pion production

Scaling: in order to compare

spectra at different proton energies,

we divide by the proton energy Ep

Estimated positive pion yields for different

incident proton energies (FLUKA)

All normalized spectra haveAll normalized spectra have

similar shapes, with maximumsimilar shapes, with maximum

yield around yield around pp!!  !! 500  500 MeVMeV/c/c

Departure from Departure from ““scalingscaling””

consist in difference at lowconsist in difference at low

energy, and harder spectra atenergy, and harder spectra at

high high EEpp
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Neutrino beam: scaling of neutrino production

Muon-neutrino charged

current interactions at

L=732 km for different

incident proton energies

Rates GeV2/kton/1019 pots

Neutrino energy (GeV)

The superposition of theThe superposition of the

curves at the lowestcurves at the lowest

energies (expect for 400energies (expect for 400

GeVGeV) is impressive.) is impressive.

The neutrino rate at lowThe neutrino rate at low

energy is simplyenergy is simply

proportional to proportional to EEp p !!

The The power factorpower factor::

  
F " E p # N pot
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Neutrino beam: scaling of oscillated events

! We can now compute the number of !µ"!e oscillated neutrino events

! One assumes for the moment “perfect focusing”  with efficiency #=20%
and an acceptance of 1 rad

! We compute the needed proton on target (Npot) in order to have Ne=5 in
a detector of 2.35 km for various proton energies and sin22$13 = 0.001

! Similarly, we can also compute the number of !µ charged current events
in the region of oscillation

Ne " N pot # dE$% E$( )& E$( )P E$ ,L,'m
2
,(

13( ))

Nµ,CC

0
" dE#$ E#( )% E#( )

Emin

Emax

&
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Results
b
a
se

li
n

e

proton energy

For For each baselineeach baseline there is  there is an optimal proton energyan optimal proton energy  EEpp
optimaloptimal, which minimizes the required, which minimizes the required

integrated proton on targetsintegrated proton on targets

Conversely, for each proton energy there is an optimal baseline Lopt, which maximizes the
integrated neutrino oscillation probability in the neutrino energy region which corresponds
to the largest weighted pion yield at that proton energy

N pot
N pot

N pot
N pot N pot

These results hold also in “real” focusing (see New J.Phys.4:88,2002)
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Example I: 2.2 GeV SPL

2x1023 pots/yr @ 2.2 GeV
L=120 km and 2.35 kton

For !m2 = 2.5"10–3 eV2:
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Example III: a new high intensity 20 GeV PS

For !m2 = 2.5"10–3 eV2:

2x1022 pots/yr @ 20 GeV
L=732 km and 2.35 kton
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Conclusion

! The Liquid Argon TPC is a new kind of detector, effectively an electronic
bubble-chamber

" ICARUS T3000 at Gran Sasso is an important milestone for this
technology and acts as a full-scale test-bed in a difficult underground
environment

" This technology has large potentials for future programs

!  ICARUS T3000 acts as a sort of observatory for the study of
neutrinos and the instability of matter at the Gran Sasso
Underground Laboratory

" ICARUS has a vast physics program in the domain of neutrinos and proton
decay searches which is highly complementary to collider physics (LHC).

" It will take advantage of the CERN-NGS neutrino beam

" For !µ"!e searches, the maximum intensity will be required (8x1019

pots/year would be welcome). It could be worth it. A low energy focusing
could optimize the sensitivity per p.o.t.

! Beyond CNGS, high intensity proton beams with x10-x100 the present
intensities will be fundamental to stay at the forefront of accelerator neutrino
physics.


